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1 References

The moment-SOS hierarchy was first applied to polynomial optimal control (POC) in [15].
It fits the framework of the generalized problem of moments [14, 13]. The lecture follows
closely the presentation of [10]. See also [9] for sketchy lecture notes.

The moment-SOS hierarchy can be seen as an alternative to standard numerical methods for
POC. It is a global method generating lower bounds on the value function, while local meth-
ods based e.g. on the Pontryagin Maximum Principle (necessary conditions of optimality) or
discretization (local optimization algorithms) generate upper bounds. If the lower and upper
bounds coincide, then on the one hand, it is not necessary to go deeper in the hierarchy,
and on the other hand, it is not necessary to try other initial conditions or discretize further
in the local methods. This strategy was followed in [1] for solving a POC problem in data
science.

The moment-SOS hierarchy is a global method bearing similarities with the Hamilton-Jacobi-
Bellmann (HJB) approach to POC which consists of solving a non-linear PDE, see e.g. [7,
Section 10.3] or [20, 5]. It can be interpreted as a convex relaxation of the HJB PDE.

The Brockett integrator of nonlinear systems control is used as a numerical example for
the application of the moment-SOS hierarchy to POC in [15]. It is also known (up to a
change of coordinates) as the unicycle or Dubins system, one of the simplest instance of a
non-holonomic system in robotics, see e.g. [6] for the connection. It was studied thoroughly
in [19], see also [18].

Linear formulations of optimal control problems (on ODEs and PDEs) are classical, and be
tracked back to the work by L. C. Young, Filippov, Warga or Gamkrelidze. For more details
see e.g. [8, Part III]. The main idea is that in calculus of variations or optimal control, the
optima are not attained, i.e. the problems typically do not have solutions when formulated
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in smooth functional spaces (e.g. continuous functions of time, or measurable functions of
time). Once formulated in a dual space, e.g. a space of measures, optima are generally
attained [16].

Relaxed controls, also called Young measures in the calculus of variations literature, are
designed to capture oscillations at the limit, when the frequency tends to infinity. Some
POC problems feature a different limit behavior, namely a concentration of the control
signal. This is the case for impulsive POC problems arising in space engineering, for which
the moment-SOS hierarchy has been adapted [2, 3]. DiPerna-Majda measures, an extension
of the Young measures, can be used to deal with the simultaneous presence of oscillations
and concentrations, also with the moment-SOS hierarchy [4, 11].

More recently, efforts were dedicated to applying the moment-SOS hierarchy for analyzing
and controlling nonlinear PDEs [12, 17].

2 Exercises

2.1 Exercise 3.1

2.1.1 Statement

Relaxed controls capture limit behavior such as e.g. oscillations

lim
r→∞

∫ 1

0

v(urt)dt =

∫ 1

0

∫
U

v(u)ωt(du)dt, ∀v ∈ C(U)

What is the limit ωt(du) for urt = cos(2πrt), r = 1, 2, . . . ?

2.1.2 Solution

To be completed.

2.2 Exercise 3.2

2.2.1 Statement

The classical Bolza problem

v∗ = infu

∫ 1

0

(x2t + (u2t − 1)2)dt

ẋt = ut, x0 = 0
xt ∈ [−1, 1], ut ∈ [−1, 1] ∀t ∈ [0, 1]
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is relaxed to

v∗R = infω

∫ 1

0

∫
U

(x2t + (u2 − 1)2) ωt(du)dt

ẋt =

∫
U

u ωt(du), x0 = 0

xt ∈ [−1, 1], ωt ∈P([−1, 1]) ∀t ∈ [0, 1]

where P([−1, 1]) is the set of probability measures on [−1, 1]. Prove that there is no relax-
ation gap: v∗ = v∗R and that the relaxed infimum is attained at ω∗t = 1

2
(δ−1 + δ+1).

2.2.2 Solution

To be completed.

2.3 Exercise 3.3

2.3.1 Statement

Prove that the measure LP

p∗(t0, x0) := minµ,µT

∫
lµ+

∫
lTµT

s.t. ∂µ
∂t

+ div(fµ) + µT = δt0δx0
µ ∈ C([t0, T ]×X × U)′+, µT ∈ C({T} ×XT )′+

has a dual LP

d∗(t0, x0) := supv v(t0, x0)
s.t. l + ∂v

∂t
+ grad v · f ∈ C([t0, T ]×X × U)+

lT − v(T, .) ∈ C({T} ×XT )+

on functions v ∈ C1([t0, T ]×X) and that there is no duality gap: p∗ = d∗.

2.3.2 Solution

To be completed.

2.4 Exercise 3.4

2.4.1 Statement

In the dual LP
supv v(t0, x0)
s.t. l + ∂v

∂t
+ grad v · f ∈ C([t0, T ]×X × U)+

lT − v(T, .) ∈ C({T} ×XT )+

by combining the dual inequalities evaluated on an admissible trajectory, prove that for any
admissible v it holds v∗ ≥ v on [t0, T ]×X.
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2.4.2 Solution

To be completed.

3 Questions and answers

To be completed.
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