Selected Topics on Moment Problems. 1

Mihai Putinar
UCSB-Newcastle U
2020

Contents

Continued fraction expansion of real numbers
Continued fraction expansion of functions
Stieltjes
Hamburger

First there were numbers

Let $x_{0}>x_{1}>0$ be integers. Euclid division:

$$
\begin{gathered}
x_{0}=b_{0} x_{1}+x_{2} \\
x_{1}=b_{1} x_{2}+x_{3} \\
\vdots \\
x_{n-1}=b_{n-1} x_{n}
\end{gathered}
$$

with G.C.D. $x_{n}=\left(x_{0}, x_{1}\right)$.

Divide and repeat

$$
\begin{gathered}
\frac{x_{k-1}}{x_{k}}=b_{k-1}+\frac{1}{x_{k} / x_{k+1}}: \\
x_{0} / x_{1}=b_{0}+\frac{1}{b_{1}+\frac{1}{b_{2}+\ldots+\frac{1}{b_{n-1}}}}= \\
b_{0}+\mathbb{K}_{k=1}^{n-1}\left(\frac{1}{b_{k}}\right)
\end{gathered}
$$

Irrationality criteria: the continued fraction does not stop

Hipassus of Metapontum (500 BC): The diagonal x_{0} of the square of side x_{1} satisfies (via an ingenious geometric recurrence)

$$
x_{0} / x_{1}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}} .
$$

Irrationality criteria: the continued fraction does not stop

Hipassus of Metapontum (500 BC): The diagonal x_{0} of the square of side x_{1} satisfies (via an ingenious geometric recurrence)

$$
x_{0} / x_{1}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}}
$$

More general (Bombelli method, approx. 1560) for N positive integer, not a perfect square:

$$
N=a^{2}+r, \quad \sqrt{a^{2}+r}=a+x
$$

yields:

$$
x=\frac{r}{2 a+x},
$$

hence

$$
\sqrt{N}=a+\frac{r}{2 a+\frac{r}{2 a+\frac{r}{2 a+\ldots}}} .
$$

The real numbers

For sequences of non-negative integers $b=\left(b_{n}\right)_{n=0}^{J}$, with J finite or not, consider \mathcal{Z} the union of domains

$$
\mathcal{D}(b)=\mathbb{Z}_{+}, \quad b_{n}>0, \quad n>0
$$

or

$$
\mathcal{D}(b)=[0, J] \cap \mathbb{Z}_{+}, \quad J>0,\left(b_{n}>0, \quad n>0\right), \quad b_{J} \geq 2
$$

or

$$
\mathcal{D}(b)=\{0\}
$$

The real numbers

For sequences of non-negative integers $b=\left(b_{n}\right)_{n=0}^{J}$, with J finite or not, consider \mathcal{Z} the union of domains

$$
\mathcal{D}(b)=\mathbb{Z}_{+}, \quad b_{n}>0, \quad n>0
$$

or

$$
\mathcal{D}(b)=[0, J] \cap \mathbb{Z}_{+}, \quad J>0,\left(b_{n}>0, \quad n>0\right), \quad b_{J} \geq 2
$$

or

$$
\mathcal{D}(b)=\{0\}
$$

Theorem. The mapping

$$
\mathcal{Z} \longrightarrow \mathbb{R}, \quad b \mapsto b_{0}+\mathbb{K}_{k=1}^{J}\left(\frac{1}{b_{k}}\right)
$$

is bijective, and a homeomorphism from \mathcal{Z} endowed with pointwise convergence.

Algebra of continued fractions

Recurrence, with $a_{j} \neq 0$:

$$
\begin{gathered}
x_{0}=b_{0} x_{1}+a_{1} x_{2} \\
x_{1}=b_{1} x_{2}+a_{2} x_{3} \\
\vdots \\
x_{n-1}=b_{n-1} x_{n}+a_{n} x_{n+1}
\end{gathered}
$$

has partial fractions (no cancellation):

$$
\frac{P_{n}}{Q_{n}}=b_{0}+\mathbb{K}_{k=1}^{n}\left(\frac{a_{k}}{b_{k}}\right) .
$$

Main Theorem: Wallis 1656, Brouncker 1655, Euler 1748

The formal continued fraction, with initial data:

$$
P_{-1}=1, P_{0}=0, Q_{-1}=0, Q_{0}=1
$$

implies

$$
\begin{gathered}
P_{n}=b_{n} P_{n-1}+a_{n} P_{n-2} \\
Q_{n}=b_{n} Q_{n-1}+a_{n} Q_{n-2} \\
P_{n} Q_{n-1}-P_{n-1} Q_{n}=(-1)^{n-1} a_{1} a_{2} \ldots a_{n}
\end{gathered}
$$

$$
\xi=b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\ddots+\frac{a_{n}}{b_{n}+\frac{a_{n+1}}{\xi_{n+1}}}}}
$$

yields

$$
\xi=\frac{\xi_{n+1} P_{n}+a_{n-1} P_{n-1}}{\xi_{n+1} Q_{n}+a_{n-1} Q_{n-1}}
$$

Enters Positivity

Assume all $a_{j}, b_{j}>0$. Then

$$
\frac{P_{n}}{Q_{n}}-\frac{P_{n-1}}{Q_{n-1}}=(-1)^{n-1} \frac{a_{1} a_{2} \ldots a_{n}}{Q_{n} Q_{n-1}}
$$

therefore

$$
\frac{P_{0}}{Q_{0}}<\ldots \frac{P_{2 k}}{Q_{2 k}}<\frac{P_{2 k+1}}{Q_{2 k+1}}<\ldots<\frac{P_{1}}{Q_{1}} .
$$

Quadratic irrationals

Periodic continued fraction implies (Euler)

$$
\xi=\frac{\xi P_{d}+a_{d-1} P_{d-1}}{\xi Q_{d}+a_{d-1} Q_{d-1}}
$$

and vice-versa (Lagrange, Galois).
Moebius transform adaptation to mixed period.

Fermat problem

Solve in integers the equation

$$
x^{2}=1+y^{2} D
$$

where $D>0$ is an integer.
If $\left(x_{1}, y_{1}\right)$ is a solution, then

$$
x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n}
$$

is also a solution. Indeed:

$$
x_{n}^{2}-y_{n}^{2} D=\left(x_{1}^{2}-y_{1}^{2} D\right)^{n}=1
$$

Lurking Continued Fraction:

$$
\begin{gathered}
x_{n+1}=\left(2 x_{1}\right) x_{n}-x_{n-1}, \quad x_{0}=1 \\
y_{n+1}=\left(2 x_{1}\right) y_{n}-y_{n-1}, \quad y_{0}=0
\end{gathered}
$$

derived from

$$
x_{n+1}+y_{n+1} \sqrt{D}=\left(x_{n}+y_{n} \sqrt{D}\right)\left(x_{1}+y_{1} \sqrt{D}\right)
$$

Hence:

$$
\frac{1}{\sqrt{D}}=\frac{y_{1}}{x_{1}}+\mathbb{K}_{k=1}^{\infty}\left(\frac{1}{-2 x_{1}}\right)
$$

These are all solutions (Lagrange).

Best rational approximation

For an irrational number ξ, the canonical continued fraction obtained by taking integral parts and inversion yields

$$
\begin{gathered}
\xi-\frac{P_{n}}{Q_{n}}=\frac{\xi_{n+1} P_{n}+a_{n-1} P_{n-1}}{\xi_{n+1} Q_{n}+a_{n-1} Q_{n-1}}-\frac{P_{n}}{Q_{n}}= \\
\frac{1}{Q_{n}^{2}\left(\frac{Q_{n+1}}{Q_{n}}+\frac{1}{\xi_{n+2}}\right)} .
\end{gathered}
$$

Best Lagrange Approximation

For ξ irrational: every convergent P / Q satisfies

$$
|Q \xi-P|<|q \xi-p|
$$

for any $p / q \neq P / Q$ and $1 \leq q \leq Q$. And vice-versa.
Moreover, if

$$
\left|\frac{p}{q}-\xi\right|<\frac{1}{2 q^{2}}
$$

then p / q is a convergent of ξ (Legendre).

Bernoulli sequences

Let θ, δ be real numbers and define

$$
[(n+1) \theta+\delta]-[n \theta+\delta]=r_{n}(\theta, \delta)
$$

The sequence $\left(r_{n}\right)$ is periodic if and only if θ is rational.
See A. Markov Master Thesis (1879-1880) devoted to Lagrange spectra.

Analytic Theory

Markov's Paradox

Solve

$$
z^{2}-2 z-1=0
$$

Equivalently

$$
z=2+\frac{1}{z} .
$$

The solution should be

$$
\xi=2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}},
$$

that is $\xi=1+\sqrt{2}$, because all entries are positive.

Where is the other root $1-\sqrt{2}$?
The approximants

$$
2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots+\frac{1}{2+1-\sqrt{2}}}}}
$$

do not converge.

Koch divergence test

Assume $b_{n} \in \mathbb{C}$ and $\sum_{n}\left|b_{n}\right|<\infty$.. Then the approximants of $\mathbb{K}_{1}^{\infty}\left(\frac{1}{b_{n}}\right)$ satisfy:

$$
\begin{aligned}
& \lim _{n} P_{2 n}=P, \quad \lim _{n} P_{2 n+1}=P^{\prime}, \\
& \lim _{n} Q_{2 n}=Q, \quad \lim _{n} Q_{2 n+1}=Q^{\prime},
\end{aligned}
$$

satisfy

$$
P^{\prime} Q-P Q^{\prime}=1
$$

Hence clear divergence.

Seidel convergence test

Assume all $b_{j}>0$. Then

$$
\mathbb{K}_{1}^{\infty}\left(\frac{1}{b_{n}}\right)
$$

converges if and only if

$$
\sum_{n} b_{n}=\infty
$$

The eternal quest: π

From Wallis:

$$
\frac{2}{\pi}=\prod_{j=1}^{\infty} \frac{(2 j-1)(2 j+1)}{(2 j)^{2}}
$$

and Brouncker:

$$
\frac{4}{\pi}=1+\mathbb{K}_{1}^{\infty}\left(\frac{(2 n-1)^{2}}{2}\right)
$$

straight to the origins of the analytic theory of continued fractions.

Main idea, derived from Wallis infinite product. Consider a function $b(s)>s$ subject to:

$$
b(s) b(s+2)=(s+1)^{2}
$$

And note:

$$
b(1)=\frac{2^{2}}{b(3)}=\frac{2^{2}}{4^{2}} b(5)=\frac{2^{2}}{4^{2}} \frac{6^{2}}{b(7)}=\ldots=
$$

$$
\begin{gathered}
\frac{2^{2}}{4^{2}} \frac{6^{2}}{8^{2}} \frac{10^{2}}{12^{2}} \ldots \frac{(4 n-2)^{2}}{(4 n)^{2}} b(4 n+1)=\frac{1^{2}}{2^{2}} \frac{3^{2}}{4^{2}} \frac{5^{2}}{6^{2}} \ldots \frac{(2 n-1)^{2}}{(2 n)^{2}} b(4 n+1)= \\
\frac{1 \times 3}{2^{2}} \frac{3 \times 5}{4^{2}} \ldots \frac{(2 n-1)(2 n+1)}{(2 n)^{2}} \frac{b(4 n+1)}{2 n+1}
\end{gathered}
$$

That is

$$
b(1)=\left(\frac{2}{\pi}+o(1)\right) \frac{b(4 n+1)}{2 n+1}
$$

But $s+2<b(s+2)$ and the functional equation yields:

$$
s<b(s)<\frac{s^{2}+2 s+1}{s+2}=s+\frac{1}{s+2} .
$$

Hence $b(1)=\frac{2}{\pi}$.
For the continued fraction we start with the formal series:

$$
b(s)=s+c_{0}+\frac{c_{1}}{s}+\frac{c_{2}}{s^{2}}+\ldots
$$

and find the coefficients by applying Euclid division algorithm to series in $1 / s$. Conclusion

$$
b(s)=s+\frac{1^{2}}{2 s+\frac{3^{2}}{2 s+\frac{5^{2}}{2 s+\ldots}}} .
$$

With convergence derived from the functional equations and elementary inequalities.

Closed form

$$
b(s)=4\left[\frac{\Gamma(3+s / 4)}{\Gamma(1+s / 4)}\right]^{2} .
$$

due to Ramanujan.

The new "continuum"

Laurent series

$$
f(z)=\sum_{k \in \mathbb{Z}} \frac{c_{k}}{z^{k}}
$$

with finitely many $k<0$ terms. Define

$$
[f]=\sum_{k \leq 0} \frac{c_{k}}{z^{k}}, \quad \operatorname{Frac}(f)=f-[f]
$$

And non-archimedean norm

$$
\|f\|=\exp \operatorname{deg} f, \quad \operatorname{deg}(0)=-\infty
$$

The algorithm

Initial $f_{0}=f$ produces a P-fraction:

$$
f=\left[f_{0}\right]+\frac{1}{1 / \operatorname{Frac}\left[f_{0}\right]}=\left[f_{0}\right]+\frac{1}{\left[f_{1}\right]+\frac{1}{\left[f_{2}\right]+\ldots}}
$$

For non-rational $f(z)$ one finds $\operatorname{deg} Q_{n} \rightarrow \infty$ and

$$
\left\|f-\frac{P_{n}}{Q_{n}}\right\|=\exp \left(-\operatorname{deg} Q_{n}-\operatorname{deg} Q_{n+1}\right)
$$

Theorem. (Markov, Chebyshev, Gauss) An irreducible rational fraction P / Q is a convergent for the Laurent series f if and only if

$$
\operatorname{deg}(f-P / Q) \leq-2 \operatorname{deg} Q-1
$$

Padé approximation

Specializes to Padé approximation problem: given f and $n>0$ find all polynomials $P, Q, Q \neq 0, \operatorname{deg} Q \leq n$ such that

$$
\operatorname{deg}(Q f-P) \leq n-1
$$

A normal index is $\operatorname{deg} Q$ for an approximant P / Q.

Constructive aspects

Starting with $f(z)=[f](z)+\sum_{k \geq 1} \frac{c_{k}}{z^{k}}$ one defines:

$$
H_{n}(f)=\left(\begin{array}{ccc}
c_{1} & c_{2} & \ldots c_{n} \\
c_{2} & c_{3} & \ldots c_{n+1} \\
\vdots & \ddots & \\
c_{n} & c_{n+1} & \ldots c_{2 n-1}
\end{array}\right)
$$

and

$$
J_{n}(z)=\operatorname{det}\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots c_{n+1} & \\
c_{2} & c_{3} & \ldots c_{n+2} & \\
\vdots & & \ddots & \\
c_{n} & c_{n+1} & \ldots c_{2 n} & \\
1 & z & \ldots & z^{n}
\end{array}\right)
$$

Main Theorem.

C. G. J. Jacobi (approx. 1850): An integer $n>0$ is a normal index for f if and only of $\operatorname{det} H_{n}(f) \neq 0$. In that case the convergent P / Q with $\operatorname{deg} Q=n$ is, with a constant γ :

$$
\begin{gathered}
Q_{n}(z)=\gamma J_{n}(z) \\
P_{n}(z)=\left[J_{n}(z) f(z)\right] .
\end{gathered}
$$

And $f(z)$ is rational if and only if there exists N with $\operatorname{det} H_{n}(f)=0, \quad n \geq N$. (Kronecker)

Abelian integrals

Let $R \in \mathbb{C}[z]$ of degree $\operatorname{deg} R=2 g+2 \geq 2$ without multiple roots. Pell's type equation:

$$
P^{2}-Q^{2} R=1
$$

has polynomial solutions, $Q \neq 0$ if and only if $\sqrt{R(z)}$ admits a periodic polynomial continued fraction expansion, if and only if there exists $r \in \mathbb{C}[z]$, $\operatorname{deg} r=g$, so that

$$
\int \frac{r}{\sqrt{R}} d z
$$

can be expressed in elementary functions. (Abel 1826).

References

Perron, Oskar. Die Lehre von den Kettenbrüchen, Band I, Band II, Teubner, Stuttgart, 1954, 1957.

Khrushchev, Sergey. Orthogonal polynomials and continued fractions. From Euler's point of view. Encyclopedia of Mathematics and its Applications, 122. Cambridge University Press, Cambridge, 2008.

Stieltjes

Stieltjes has accumulated examples and computations concerning semi-convergent series ("the curse of divergent series" according to Abel), leading to a rigorous study of functions of s of the form:

$$
b_{0} s+c_{0}+\mathbb{K}_{k=1}^{\infty}\left(\frac{a_{n}}{b_{n} s+c_{n}}\right)
$$

where

$$
a_{n}>0, b_{n} \geq 0, \Re c_{n} \geq 0
$$

Main observation, for $s>0$:

$$
w \mapsto \frac{a_{n}}{b_{n} s+c_{n}+w}
$$

preserves $\Re w>0$.

Complex Markov Convergence Test

If

$$
b_{0} s+c_{0}+\mathbb{K}_{k=1}^{\infty}\left(\frac{a_{n}}{b_{n} s+c_{n}}\right)
$$

converges to finite values on a subset of $(0, \infty)$ with an accumulation point, then it converges to an analytic function defined on $\Re w>0$.

Major advance, a la normal family argument, discovered by Stieltjes many years before Vitali. See his letters to Hermite.

Stieltjes Memoir-1894

$$
S(z)=\frac{1}{a_{1} z+\frac{1}{a_{2}+\frac{1}{a_{3} z+\frac{1}{a_{4}+\ldots}}}}
$$

with all parameters $a_{j} \geq 0$. Produces convergents satisfying

$$
\begin{aligned}
\lim _{n} \frac{P_{2 n}(z)}{Q_{2 n}(z)} & =F(z) \\
\lim _{n} \frac{P_{2 n+1}(z)}{Q_{2 n+1}(z)} & =F_{1}(z)
\end{aligned}
$$

where F, F_{1} are analytic functions on $\mathbb{C} \backslash(-\infty, 0]$.

Asymptotic expansion

$$
S(z) \sim \frac{c_{0}}{z}-\frac{c_{1}}{z^{2}}+\frac{c_{2}}{z^{3}}-\ldots
$$

That is

$$
\lim _{s \rightarrow \infty} s^{n+1}\left[S(s)-\frac{c_{0}}{s}+\frac{c_{1}}{s^{2}}+\ldots+(-1)^{n} \frac{c_{n-1}}{s^{n}}\right]=(-1)^{n} c_{n}
$$

for all $n \geq 1$.

Indeterminateness

Assume $\sum_{n} a_{n}<\infty$. Then all limits

$$
\begin{aligned}
\lim P_{2 n}(z)=p(z), & \lim Q_{2 n}(z)=q(z) \\
\lim P_{2 n+1}(z)=p_{1}(z), & \lim Q_{2 n+1}(z)=q_{1}(z)
\end{aligned}
$$

exist in \mathbb{C} and

$$
\frac{p(z)}{q(z)}=\sum_{j} \frac{M_{j}}{z+m_{j}}
$$

with $M_{j}>0, m_{j} \geq 0$. Similarly for $\frac{p_{1}(z)}{q_{1}(z)}$, but

$$
\frac{p(z)}{q(z)} \neq \frac{p_{1}(z)}{q_{1}(z)}
$$

Determinateness

Assume $\sum_{n} a_{n}=\infty$. Then the continued fraction converges on $\mathbb{C} \backslash(-\infty, 0]$ to a function of the form

$$
S(z)=\int_{0}^{\infty} \frac{d f(u)}{u+z}
$$

where f is monotonically non-decreasing on $[0, \infty)$ and all power moments of $d f(u)$ exist. A new notion of integral was developed by Stieltjes for this purpose. Unifying in particular the two cases

$$
\sum_{j} \frac{M_{j}}{z+m_{j}}=\int_{0}^{\infty} \frac{d \phi(u)}{u+z}
$$

Comparison: old continuum versus the new one

$$
\xi=\sum_{j=0}^{\infty} \frac{n_{j}}{10^{j}} \in[0, \infty), \quad \xi=b_{0}+\mathbb{K}_{j}\left(\frac{1}{b_{j}}\right),
$$

and

$$
\sigma \in \text { Meas }_{+}[0, \infty), \quad \int_{0}^{\infty} \frac{d \sigma(u)}{u+z} \sim \frac{1}{a_{1} z+\frac{1}{a_{2}+\frac{1}{a_{3} z+\frac{1}{a_{4}+\ldots}}}}
$$

In both representations the parameters $b_{j} \in \mathbb{Z}_{+}$, respectively $a_{j} \geq 0$ are independent.

Cauchy transforms

There is a constructive bijective correspondence between analytic functions $F(z)$ defined in the half-plane $\Im(z)>0$ and satisfying $\Im F(z)>0$ there, and positive Borel measures σ of finite mass, defined on \mathbb{R} admitting all power moments:

$$
F(z)=a z+b+\int_{-\infty}^{\infty} \frac{1+t z}{t-z} d \sigma(t)
$$

where $a \geq 0$ and $b \in \mathbb{R}$.
Moreover, the measure σ admits all moments, if and only if

$$
\sup _{y \geq 1}|y F(i y)|<\infty
$$

and there are real numbers $s_{k}, k \geq 0$, satisfying

$$
\lim _{y \rightarrow \infty}(i y)^{2 n+1}\left[F(i y)+\frac{s_{0}}{i y}+\frac{s_{1}}{(i y)^{2}}+\ldots+\frac{s_{2 n-1}}{(i y)^{2 n}}\right]=-s_{2 n}
$$

Recovery: Stieltjes and Perron

If

$$
F(z)=\int_{-\infty}^{\infty} \frac{1}{t-z} d \sigma(t), \Im z>0,
$$

then

$$
\frac{\sigma\{a\}+\sigma\{b\}}{2}+\sigma(a, b)=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \Im \int_{a}^{b} F(x+i \epsilon) d x
$$

Hamburger articles 1919-1921

Real heritor of Stieltjes, author of a detailed study of the moment problem on the real line. All centered on continued fraction expansions of the form:

$$
S(z)=\frac{a_{1}}{z+b_{1}+\frac{a_{2}}{z+b_{2}+\frac{a_{3}}{z+b_{3}+\ldots}}},
$$

with $a_{j} \neq 0$ real and b_{j} complex.
Convergence assured by selection principle of Grommer (à la normal families argument).
Parametrization of all solutions of the truncated problem. Identification, and recognition of importance, of Christoffel and Darboux kernel.
Complemented by R. Nevanlinna function theoretic study (1922) of Stieltjes moment problem.

Polya 1920 and limit theorems of probability theory

Theorem.(Continuity of the Moment Problem) Assume $f(x)$ is a continuous, non-decreasing distribution function on the real line, admitting all moments;

$$
s_{n}=\int_{-\infty}^{\infty} t^{n} d f(t), \quad n \geq 0
$$

with $\lim \sup \frac{s_{2 n}^{1 /(2 n)}}{n}<\infty$. If a sequence of distribution functions $f_{k}(x)$ satisfies

$$
\lim _{k} \int_{-\infty}^{\infty} t^{n} d f_{k}(t)=s_{n}, \quad n \geq 0
$$

then

$$
\lim _{k} f_{k}(x)=f(x)
$$

uniformly on compact subsets of the real line.

Century long quest, paved with frustrations and failures, to prove the conjectured Central Limit Theorem stated by Laplace.

One of the main motivations of Chebyshev and A. Markov to study the moment problem. And later Lyapunov. They did it initially for the Gaussian distribution as limit.

Tutorial: Proofs of Seidel and Koch tests

Assume $b_{n}>0$ for all n. Then (Seidel)

$$
\mathbb{K}_{1}^{\infty}\left(\frac{1}{b_{n}}\right) \text { converges } \Leftrightarrow \sum_{1}^{\infty} b_{n}=\infty
$$

Recall that the convergents $\frac{P_{n}}{Q_{n}}$ satisfy:

$$
\begin{gathered}
P_{n}=b_{n} P_{n-1}+P_{n-2}, \quad Q_{n}=b_{n} Q_{n-1}+Q_{n-2} \\
P_{-1}=1, \quad P_{0}=0, \quad Q_{-1}=0, Q_{0}=1
\end{gathered}
$$

and

$$
\frac{P_{2 n+1}}{Q_{2 n+1}}-\frac{P_{2 n}}{Q_{2 n}}=\frac{1}{Q_{2 n} Q_{2 n+1}} .
$$

1) Prove:

$$
\frac{Q_{n}}{Q_{n-1}}=b_{n}+\frac{1}{b_{n-1}+\frac{1}{b_{n-2}+\ldots+\frac{1}{b_{1}}}}
$$

2) Show that

$$
\frac{Q_{n}}{Q_{n-2}}=1+b_{n}\left[b_{n-1}+\frac{1}{b_{n-2}+\ldots+\frac{1}{b_{1}}}\right]>1
$$

3) Deduce $Q_{2 n}>Q_{2 n-2}>\ldots>1, Q_{2 n+1}>Q_{2 n-1}>\ldots>b_{1}$. Hence

$$
Q_{2 n}>b_{1}\left(b_{2}+b_{4}+\ldots+b_{2 n}\right)
$$

and

$$
Q_{2 n+1}>b_{2 n+1}+b_{2 n-1}+\ldots+b_{1}
$$

4) If $\sum b_{n}=\infty$, then $\mathbb{K}_{1}^{\infty}\left(\frac{1}{b_{n}}\right)$ converges.

If $\sum b_{n}<\infty$, use Koch criterion (next).

Proof of Koch criterion

Assume $b_{n} \in \mathbb{C}$ satisfy $\sum_{n}\left|b_{n}\right|<\infty$. Then

$$
\begin{aligned}
& \lim _{n} P_{2 n}=P, \quad \lim _{n} P_{2 n+1}=P^{\prime} \\
& \lim _{n} Q_{2 n}=Q, \quad \lim _{n} Q_{2 n+1}=Q^{\prime}
\end{aligned}
$$

and

$$
P^{\prime} Q-P Q^{\prime}=1
$$

1) Can assume $P_{0}=1$, so that (by induction):

$$
\left|P_{n}\right| \leq\left(1+\left|b_{1}\right|\right)\left(1+\left|b_{2}\right|\right) \ldots\left(1+\left|b_{n}\right|\right), \quad n \geq 1
$$

and similarly $\left|Q_{n}\right|$.
Hence the sequences $\left(\left|P_{n}\right|\right)$ and $\left(\left|Q_{n}\right|\right)$ are bounded.
2) Prove

$$
P_{2 n}=b_{2 n} P_{2 n-1}+b_{2 n-2} P_{2 n-3}+\ldots+b_{2} P_{1}+P_{0}
$$

and deduce that $\lim _{n} P_{2 n}$ exists. Similarly for the other three sub-sequences.
3) Infer

$$
P^{\prime} Q-P Q^{\prime}=1
$$

