Positively invariant set estimation: references, exercises, questions and answers

Didier Henrion^{1,2}

Online learning weeks of the POEMA network

Lecture of June 3, 2020

1 References

The lecture follows closely [3], where all the proofs are detailed, in the case of controlled dynamical systems, both in continuous-time and discrete-time. Many of the technical arguments are adaptations of ideas proposed previously in [2] for approximating the region of attraction of controlled ordinary differential equations. For further developments see [6].

The technical background on push-forward measures, Koopman and Frobenius-Perron operators for dynamical systems is covered in [4]. In particular, the example of push-forward measure for the logistic map is described in [4, Section 1.2].

The moment-SOS hierarchy was applied in [1] for computing (moments of) invariant measures (fixed points of the Frobenius-Perron operator) of one-dimensional dynamical systems, in particular for the logistic map. See [5] for computing invariant measures with the hierarchy from a broader perspective

2 Exercises

2.1 Exercise 2.1

2.1.1 Statement

Consider the logistic map

$$f(x) = 4x(1-x)$$

on

$$X := [0, 1].$$

¹CNRS; LAAS; Université de Toulouse, 7 avenue du colonel Roche, F-31400 Toulouse, France.

²Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, CZ-16626 Prague, Czechia.

- **a.** Given $\mu(dx) = m_0(x)dx$, derive analytically $f_{\#}\mu$.
- **b.** Given $\mu(dx) = I_{[0,1]}(x)dx$ compute $f_{\#}\mu$ and $f \circ f_{\#}\mu$.
- **c.** Prove that $\mu(dx) = dx/(\pi\sqrt{x(1-x)})$ is invariant.
- **d.** Prove that $\mu(dx) = \delta_{3/4}(dx)$ is invariant.

2.1.2 Solution

To be completed.

2.2 Exercise 2.2

2.2.1 Statement

Consider the LP

$$p^* = \sup_{\substack{\lambda \in \mathcal{X}}} \langle 1, \mu_0 \rangle$$

s.t.
$$\mu = \mu_0 + \alpha f_{\#} \mu$$
$$\mu_0 + \hat{\mu}_0 = \lambda_X$$

where λ_X is the Lebesgue measure on X and the optimization variables are μ , μ_0 , $\hat{\mu}_0$ all in $C(X)'_+$.

Prove that the supremum is attained by $\mu_0^* = \lambda_{X_I}$ and hence $p^* = \text{vol } X_I$.

2.2.2 Solution

To be completed.

2.3 Exercise 2.3

2.3.1 Statement

Derive the dual LP

$$d^* = \inf_{x \in \mathcal{X}} \langle w, \lambda_X \rangle$$

s.t. $(v - \alpha v \circ f, w - v - 1, w) \in C(X)^3_+.$

by convex duality. Prove that there is no duality gap.

2.3.2 Solution

To be completed.

2.4 Exercise 2.4

2.4.1 Statement

By replacing $C(X)_+$ with $Q(X)_{r,r}$ we get a monotone converging sequence of lower bounds

$$p_r^* = d_r^* \le p_{r+1}^* = d_{r+1}^* \le p_\infty^* = d_\infty^* = \operatorname{vol} X_I.$$

Prove it with the Stone-Weierstrass Theorem.

2.4.2 Solution

To be completed.

2.5 Exercise 2.5

2.5.1 Statement

In the dual we obtain a sequence of polynomials v_r , w_r in $\mathbb{R}[x]_r$ such that

$$X_{Ir} := \{ x \in X : v_r(x) \ge 0 \} \supset X_I$$

and

$$\lim_{r \to \infty} \operatorname{vol}(X_{Ir} \setminus X_I) = 0.$$

Prove it by showing that $w_r \to I_{X_I}$ in $L_1(X)$.

2.5.2 Solution

To be completed.

3 Questions and answers

To be completed.

References

- D. Henrion. Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems. Kybernetika, 48(6):1089-1099, 2012.
- [2] D. Henrion, M. Korda. Convex computation of the region of attraction of polynomial control systems. IEEE Transactions on Automatic Control, 59(2):297-312, 2014.

- [3] M. Korda, D. Henrion, C. N. Jones. Convex computation of the maximum controlled invariant set for polynomial control systems. SIAM Journal on Control and Optimization, 52(5):2944-2969, 2014.
- [4] A. Lasota, M. C. Mackey. Probabilistic properties of deterministic systems. Cambridge University Press, 1985.
- [5] V. Magron, M. Forets, D. Henrion. Semidefinite approximation of invariant measures for polynomial systems. Discrete and Continuous Dynamical Systems Series B, 24(12):6745-6770, 2019.
- [6] V. Magron, P.-L. Garoche, D. Henrion, X. Thirioux. Semidefinite approximations of reachability sets for discrete-time polynomial systems. SIAM Journal on Control and Optimization, 57(4):2799–2820, 2019.