Introduction to Christoffel-Darboux kernels for polynomial optimization
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Exponential separation of the support

1 Lebesgue restricted to S C RP, compact, non-empty interior.

@
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Exponential separation of the support

1 Lebesgue restricted to S C RP, compact, non-empty interior.

@

exp(aV/d)

Thresholding scheme: C >0, g > p

{x, va(x)" M Lva(x) < Cd7} " P " cl(int(S)).

My

Extends to positive densities on S. =
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1. CD kernel, Christoffel function, orthogonal polynomials, moments
2. CD kernel captures measure theoretic properties: univariate case
3. Quantitative asymptotics

4. The singular case

5. Using approximate moments

6. An application to polynomial optimal control
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The singular case

1 Borel probability measure in RP, compact support S, absolutely continuous.
Rqg[X]: p-variate polynomials of degree at most d (of dimension s(d) = (°})).

(P,Q) —  (P,Q),:= / PQy,

defines a valid scalar product on Ry4[X].a positive semidefinite
bilinear form on R4[X].
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Specificity of the singular case

w: Borel probability measure in RP, asbolutely continuous, compact support: S.
Ry[X]: p-variate polynomials of degree at most d (of dimension s(d) = (°}9)).

Moment based computation

o Let {P;}39) be any basis of Ry[X],
o vg: x> (Pi(x),..., Psa)(x))".
0 Mg = [vav]du € Re(@xs(d)

Then, for all x,y € R, K§(x,y) = va(x)" M, jva(y) vab M gvaly)
Let P(x) = Z, 1 ) piP; (x)P € Rq[X]. We have

/P2dp =p M, qp.

If P vanishes on S, if and only if p € ker(M, 4).
Singular moment matrix, morally, CD kernel should be +cc.
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Christoffel function to the rescue

w: Borel probability measure in RP, asbolutely continuous, compact support: S.

Rqg[X]: p-variate polynomials of degree at most d (of dimension s(d) = (°})).

Variational formulation: for all z ¢ R”

1 — A4(z) = i 24 —
K(z,2) = Nj(z) _Per?kldrfxl {/P du: P(z) = 1}.

Ai(z) = min {/Pzdp: P(z) = 1}.

PERy[X]

Given z € RP, such that there exists P € Rq[X] such that

o P(z) #0

@ P vanishes on S.

Then AL(z) = 0.
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Getting the CD kernel back (and computation from moments)

1 Borel probability measure in RP,compact support: S.
Ry4[X]: p-variate polynomials of degree at most d (of dimension s(d) = (":d)).
V denotes the Zariski closure of S (smallest algebraic set containing S).

For d large enough, V = {z € R?, A}(z) > 0}.
Polynomials on V: L, , = Ry4[X] / {P € Ry4[X], P vanishes on V}.

RKHS: (L2, 4, (-, -),) is a Hilbert space of functions on V. K is its reproducing kernel
(defined on V).

Forany x € V and P € L, 5, P(x) = [ P(y)K! (x,y)du(y).
Relation with Christoffel function: AL (z)K)(z,z) =1, forze V.

Pseudo inverse computation: let vg be any basis of Ryq[X], M, 4 moment matrix:
Vx,y € V Kl (x,y) = vd(x)Mlydvd(y).

Average value and Hilbert function: [ K/ (x,x)du(x) = dim(L?, 4) < s(d).
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5. Using approximate moments
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Motivation for approximate moments

“I am a Lasserre hierarchist, | work with pseudo-moments.”
“I am a statistician, | work with empirical moments.”

“I am a numerician, among others, | care about sensitivity to errors.”
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A stability result

Choose a basis vq of Ryq[X].

Approximation of Christoffel function: Let Q(x,y) = va4(x)M 'va(y) where M €
Re(@*s(9) is positive definite, then for all x € R?,

[QUx,X)AG(x) = 1] < ||/ = M; M~ MdeOP

If M >~ M, 4, then AL(x) =~ Q(x 3

38/48



Regularization

“Using pseudo inverse is like saying 0 = 400"
Regularization: Let po be a simple absolutely continuous measure (moments are easy
to compute). Replace p by p + Buo, 8 > 0.
M;Hrﬂuo,d = Mu,d + ﬁMuo»d =0
d d d
A/H-Buo 2 Au + fBAuo

/ (A ) bt < / (A )~ d (1 + Bro) = s(d) = O(c?)

The moment matrix is positive definite

d . d -
If Aliis,, is small, then A} is also small.

AZ+BNO stays reasonably big on the support of .

AZ+6uo stays reasonably small outside the support of y (if 3 is small).
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6. An application to polynomial optimal control
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From the tutorial of Didier

Controled ODE,

x(t) = f(x(t), u(t)),
x(t) € X,
u(t) e U,

t €[0,1],
x(0)=0

Occupation measure, given a classical trajectory

du(x, u, t) = doy(e)(x)ddye (u)dt

Relaxation: Replace classical trajectories satisfying an ODE by measures satisfying a
linear transport PDE.
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A heuristic argument

Hierarchy: f polynomial, X, U basic semi-algebraic: level d provides pseudo-moments up
to degree 2d in variables t, u, x.

PMy

Heuristic: As d grows PMy should get close to M,, 4 where p is an occupation measure
supported on optimal trajectories.

Use the Christoffel Darboux kernel:

“(x,u,t)T PM;(x, u, t)"

@ The measure is singular, we only have pseudo moments ...
@ Morally, it is small on the support of p and large outside the support.

@ Morally, it is small on the optimal trajectory and large outside.
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A semi-algebraic estimator

Hierarchy: f polynomial, X, U basic semi-algebraic: level d provides pseudo-moments up
to degree 2d in variables t, u, x.

PM,
Christoffel Darboux kernel:
“(x, u, t)TPMd_l(x7 u,t)" = Qu(x,u,t)

Morally, it is small on the optimal trajectory and large outside.

A semi-algebraic estimator: For all t € [0, 1]

(4(t), %(t)) € argmin, ,)Q(x, u, t).

An example with x(t) = sign(t)/2 and exact moments

Legendre projection ‘ Christoffel-Darboux approximation |

f a(x)
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Convergence guaranties

A semi-algebraic estimator: Qu(x, u,t) = “(x,u,t)" PM;(x, u,t)"
(0,%): t = (d(t), x(t)) € argmin, ) Q(x, u, t).

Assumption: x, u in L', bounded, continuous almost everywhere, exact moments.
Strong convergence in L.

Assumption: x, u Lipschitz, exact moments.
Rate of order O(1/+/d).

Assumption: x, u have bounded total variation, exact moments.
1
Conjecture: Rate of order O(1/d%).
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[llustration on the double integrator with constraints

Minimal time to reach the origin. v € [-1,1], x1 > —1.
X(t) = x(t)
x(t) = u(t)
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[llustration in Chemo-Immuno therapy modeling

Moussa, K., Fiacchini, M., & Alamir, M. (2019). Robust Optimal Control-based Design
of Combined Chemo-and Immunotherapy Delivery Profiles. IFAC-PapersOnLine, 52(26),
76-81.

Chemo- and immunotherapy delivery profiles
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Conclusion

@

exp(avd)

CD kernel is computed from moments of a measure .
It captures the support of u.
Century old mathematical history and still active.

Proper set up, proof guaranties, require some subtleties.

Can be combined with Lassere’s Hierarchy: example in polynomial optimal control.
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