# An introduction to Christoffel-Darboux kernels for polynomial optimization 

Edouard Pauwels

June 24, 2020

## 1 Source and references

The univariate asymptotics results are found in Maté, Nevai, Totik [5] and in the book of Stahl and Totik [7, which offers a much broarder view on the topic and illustrates the relations with potential theory. A more general result is found in [8]. The unit cube is discussed in [9] The multivariate results on the euclidean ball are found in works by Bos, Xu and co-authors [1. 2, 10, 11. The needle Polynomial was introduced by Kroo-Lubinsky [3]. The course was inspired from content developped in [4, 6].

## 2 Exercises

Exercise 1 (Pseudo inverse formula).

1. Let $M$ be a symmetric definite positive $p \times p$ matrix and $u \in \mathbb{R}^{p}, u \neq 0$

$$
\min _{x \in \mathbb{R}^{p}}\left\{x^{T} M x, \text { s.t. } \quad x^{T} u=1\right\}=\frac{1}{u^{T} M^{-1} u} .
$$

and that the minimum is attained at $x_{0}=\frac{M^{-1} u}{u^{T} M^{-1} u}$.
2. Let $M$ be a symmetric semidefinite positive $p \times p$ matrix and $u \in \mathbb{R}^{p}, u \notin \operatorname{Im}(M)$, show that

$$
\min _{x \in \mathbb{R}^{p}}\left\{x^{T} M x, \text { s.t. } \quad x^{T} u=1\right\}=0 .
$$

3. Let $M$ be a symmetric semidefinite positive $p \times p$ matrix and $u \in \mathbb{R}^{p}, u \in \operatorname{Im}(M)$, show that

$$
\min _{x \in \mathbb{R}^{p}}\left\{x^{T} M x, \text { s.t. } \quad x^{T} u=1\right\}=\frac{1}{u^{T} M^{\dagger} u}
$$

where $M^{\dagger}$ denotes Moore-Penrose pseudo-inverse of $M$.
4. Prove the pseudo inverse formula for the Christoffel-Darboux kernel in the singular case.

Exercise 2 (Bound on the cube).

1. Show that for any integers $1 \leq k \leq n$

$$
\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

2. Let $N_{d}$ be the number of monomials of degree exactly $d$ in $p$ variable, show that as $d \rightarrow \infty$.

$$
N_{d}=O\left(d^{p-1}\right)
$$

3. Show the following inequality for sums over multi indices.

$$
\sum_{|\alpha| \leq d} \prod_{i=1}^{p}\left(\alpha_{i}+\frac{1}{2}\right) \leq \sum_{|\alpha| \leq d}\left(\frac{|\alpha|+\frac{p}{2}}{p}\right)^{p}
$$

4. Deduce that as $d \rightarrow \infty$

$$
\sum_{|\alpha| \leq d} \prod_{i=1}^{p}\left(\alpha_{i}+\frac{1}{2}\right)=O\left(d^{2 p}\right)
$$

Exercise 3 (Needle polynomial). For all $d \in \mathbb{N}$, $T_{d}$ denotes the univariate Chebyshev polynomial of the first kind. We recall that for $t \geq 1$,

$$
T_{d}(t)=\frac{1}{2}\left(\left(t+\sqrt{t^{2}-1}\right)^{d}+\left(t+\sqrt{t^{2}-1}\right)^{-d}\right)
$$

Furthermore, $T_{d}(t) \in[-1,1]$ for $t \in[-1,1], T_{d}(1)=1$ and $T_{d}$ is increasing on $(1,+\infty)$.

1. Sow that for all $\delta>0$,

$$
1+\delta^{2}+\sqrt{\left(1+\delta^{2}\right)^{2}-1} \geq 1+\sqrt{2} \delta
$$

2. Using concavity of the logarithm, deduce that for all $0 \leq \delta \leq 1$,

$$
T_{d}\left(1+\delta^{2}\right) \geq 2^{\delta d-1}
$$

3. show that for all $d \in \mathbb{N}$,

$$
Q: x \mapsto \frac{T_{d}\left(1+\delta^{2}-\|x\|^{2}\right)}{T_{d}\left(1+\delta^{2}\right)}
$$

satisfies the properties of the needle polynomial
Exercise 4. Consider the set $S=\left\{(x, y) \in \mathbb{R}^{2}, 0 \leq x \leq 1,0 \leq y \leq e^{-1 / x}, x^{2}+y^{2} \leq 1\right\}$ with the convention that $(0,0) \in S$ and $d \mu$ the Lebesgue measure restricted to $S$. Show that for any $d \in \mathbb{N}^{*}$,

$$
K_{d}^{\mu}(0,0) \geq \frac{e^{\sqrt{d}}}{5}
$$

## References

[1] L. Bos (1994). Asymptotics for the Christoffel function for Jacobi like weights on a ball in $\mathbb{R}^{m}$. New Zealand Journal of Mathematics 23(99):109-116.
[2] L. Bos and B. Della Vecchia and G. Mastroianni (1998). On the asymptotics of Christoffel functions for centrally symmetric weight functions on the ball in $\mathbb{R}^{d}$. Rend. Circ. Mat. Palermo 2(52):277-290.
[3] A. Kroò and D. S. Lubinsky (2012). Christoffel functions and universality in the bulk for multivariate orthogonal polynomials. Canadian Journal of Mathematics 65(3):600620.
[4] J.B. Lasserre, \& E. Pauwels (2019). The empirical Christoffel function with applications in data analysis. Advances in Computational Mathematics, 45(3), 1439-1468.
[5] A. Máté and P. Nevai and V. Totik (1991). Szego's extremum problem on the unit circle. Annals of Mathematics, 433-53.
[6] E. Pauwels, M. Putinar \& J.B. Lasserre (2020). Data analysis from empirical moments and the Christoffel function. Foundations of Computational Mathematics, 1-31.
[7] H. Stahl, J. Steel and V. Totik (1992). General orthogonal polynomials (No. 43). Cambridge University Press.
[8] V. Totik (2000). Asymptotics for Christoffel functions for general measures on the real line. Journal d'Analyse Mathématique, 81(1):283-303.
[9] Y. Xu (1995). Christoffel functions and Fourier series for multivariate orthogonal polynomials. Journal of Approximation Theory, 82(2), 205-239.
[10] Y. Xu (1996). Asymptotics for orthogonal polynomials and Christoffel functions on a ball. Methods and Applications of Analysis 3:257-272.
[11] Y. Xu (1999). Summability of Fourier orthogonal series for Jacobi weight on a ball in $\mathbb{R}^{d}$. Transactions of the American Mathematical Society, 351(6), 2439-2458.

