EXERCISES POEMA LEARNING WEEK 2

TIMO DE WOLFF

Exercise. Let

$$f(\boldsymbol{x}) = f_{\boldsymbol{\beta}} \boldsymbol{x}^{\boldsymbol{\beta}} + \sum_{j=0}^{n} f_{\boldsymbol{\alpha}(j)} \boldsymbol{x}^{\boldsymbol{\alpha}(j)}$$

be a (nonnegative) circuit polynomial as defined in the lecture. Then $\mathbf{s} \in \mathbb{R}^n_{>0}$ is a unique minimizer of f if and only if for all $j \in [n]$ it holds that:

$$s^{\alpha(j)} = \frac{\lambda_j}{f_{\alpha(j)}}$$

Is \boldsymbol{s} also a root of f?

Exercise. A Hurwitz form is given by

$$h(x_1, \dots, x_{2n}) = \sum_{j=1}^{2n} x_j^{2n} - 2n \cdot \prod_{j=1}^{2n} x_j.$$

Show that every Hurwitz form is both a nonnegative circuit polynomial and a sum of squares.

Note: Indeed, this result can be seen as an "initial result on SONC" (or AM-GM / SAGE – choose your favorite name), proven by Hurwitz in 1891.

Exercise. Show that the SONC cone $C_{n,2d}$ indeed is a convex, full-dimensional, pointed, closed cone in $\mathbb{R}[x_1, \ldots, x_n]_{2d}$.

Note: Everything except the dimension of $C_{n,2d}$ is straight forward to show. In order to show the statement about the dimension proceed as follows:

- (1) Consider a polynomial f that is a sum of strictly positive circuit polynomials and that has full support (i.e., is in the interior of $C_{n,2d}$).
- (2) Take the 1-norm of coefficients of polynomials to obtain a metric on $\mathbb{R}[x_1, \ldots, x_n]_{2d}$ (with a small argumentation).
- (3) Show that a full dimensional ball of polynomials in that metric around f is contained in $C_{n,2d}$.

Exercise. Let $A \subseteq \mathbb{N}^n$ be a finite set and let $(\mathbb{C}^*)^A$ be the space of all n-variate complex (Laurent-)polynomials with support A. The A-discriminant is the algebraic variety in

Date: September 17, 2021.

TIMO DE WOLFF

 $(\mathbb{C}^*)^A$ given by the Zariski-closure of all (Laurent-)polynomials for which there exists an $s \in \mathbb{C}^n$ satisfying

$$f(\mathbf{s}) = \frac{\partial f}{\partial x_1}(\mathbf{s}) = \cdots = \frac{\partial f}{\partial x_n}(\mathbf{s}) = 0.$$

- (1) Let A be a (simplicial) circuit (i.e., A is minimally affine dependent, conv(A) is a simplex) and let $f = \sum_{j=0}^{n} f_{\alpha(j)} \boldsymbol{x}^{\alpha(j)} f_{\beta} \boldsymbol{x}^{\beta}$ be a nonnegative circuit polynomial supported on A with $|f_{\beta}| = \Theta_{f}$. Show that f belongs of the A-discriminant.
- (2) Let now A be arbitrary and let $f = \sum_{i=1}^{k} f_i$ be a SONC supported on A such that every $f_i = \sum_{j=0}^{n} f_{\alpha(j)_i} \boldsymbol{x}^{\alpha(j)_i} f_{\beta_i} \boldsymbol{x}^{\beta_i}$ is a nonnegative circuit polynomial with $|f_{\beta_i}| = \Theta_{f_i}$. Is f still contained in the A-discriminant? If yes: Why? If no: Is there an additional assumption that can be made in order to ensure this containment?

TIMO DE WOLFF, TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG, INSTITUT FÜR ANALYSIS UND AL-GEBRA, AG ALGEBRA, UNIVERSITÄTSPLATZ 2, 38106 BRAUNSCHWEIG, GERMANY

Email address: t.de-wolff@tu-braunschweig.de