Г

POEMA

Meeting Type	POEMA 2 nd Workshop
Date	26 November 2020
Time	09:00 – 16:45 CEST
Speakers	Etienne de Klerk (Tilburg University)
	Marie-Françoise Roy (Rennes University)
	Daniel Plaumann (Technical University of Dortmund)
	Salma Kuhlmann (University of Konstanz)
	Maria Infusino (University of Cagliari)
	Rainer Sinn (University of Berlin)
No of attendants	62

Talk: Jordan symmetry reduction for conic optimization over the doubly nonnegative cone: theory and software by Etienne de Klerk (Tilburg University)	 Ngoc Hoang Anh MAI: Is the cost matrix in the objective function of the doubly nonnegative cone to apply the dimension reduction is dense or sparse in your experiments? Daniel Brosch: We also applied in on the cases of QAPLib Daniel Brosch: Also the 100x100 grid actually corresponds to an SDP of size 100^4, we reduced that one analytically - https://github.com/DanielBrosch/SDPSymmetryReduction.jl/ Edwin van Dam: I'm not sure whether I got one of your comments right, but there are Jordan algebras that are not symmetrizations of coherent algebras. Check https://arxiv.org/abs/1912.04551 Monique Laurent : What was the final reduced size of the SDP in the 100x100 grid case? Daniel Brosch: It reduced to a second order cone problem in 50^2 socp cones
--	--

Т

Talk: Real algebraic geometry and computations, an intricated history by Marie-Françoise Roy (Rennes University)	 Victor Magron: For a nonnegative (or positive) polynomial f over the reals, does there always exist p and q in the interior of the SOS cone such that f = p / q? If no, are there any known conditions on f such that it's the case?
Talk: Moment problem in infinitely many variables by Salma Kuhlmann (University of Konstanz)	 Lorenzo: There is an equivalent characterization for "truncated" linear funtionals L : V ->R , where V is a subspace of A, finitely dimensional or with bounded degree elements? Maria Infusino: <u>https://arxiv.org/abs/2009.05115</u>