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Warm Up

What is a non-commutative polynomial?

> matrix polynomial Mx(R[x])

(1 2>x2—|—<2 0>x+<1 0>:<X2—|—2X+1 2x2 >
-2 3 11 -10 —2x2+x—-1 3x2+x
> free polynomial R(X,Y)

X2+ XY —YX+Y2£X24+Y?
> trace polynomial R[Tr(X¥) : k € N](X)

Tr(X)X? +2Tr(X?)X — X2 + 2



Warm Up

What should X represent? )

> scalars

» matrices of arbitrary size

» (bounded) operators: symmetric, anti-symmetric
» differential operators, Weyl-operators

» matrices of fixed size

This talk
Replace scalars by symmetric matrices/operators — free polynomials J




RAG and POP basics

Polynomial Optimization
» f e R[X] polynomial in commuting variables
> go=1,01,...,9r € R[X] defining a semi-algebraic set:

K={acR"|g(a)>0,...,g-(a) > 0}

» Want to minimize f over K

f. =inf f(a) st.ae K
=supacR st.f—-a>0onK

» NP-hard



RAG and POP basics
RAG helps

f,=supacR st.f—-a>0onkK NP-hard ® |

> M(9) = {p=Y_; hzg; for some h; € R[X]}
> sos relaxation (Lasserre, Parrilo)

fsos =supac R st.f—ae M(g)




RAG and POP basics
RAG helps

f,=supacR st.f—-a>0onkK NP-hard ® |

> M(9) = {p=Y_; hzg; for some h; € R[X]}

> sos relaxation (Lasserre, Parrilo)

fsos =supa€e R s.t.f—ae M(g)

> fs0s is always a lower bound
but might be strict

b
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RAG and POP basics
SOS hierarchy

> M(9): :={p =), h?g; for some h; € R[X]}

> sos hierarchy (Lasserre, Parrilo)

fi=supaceR

st.f—ae M(g)t

SDP ©®

» SDP due to the Gram matrix method:

fsos <« 3G 0:f(x)=[x]"Glx]



RAG and POP basics
SOS hierarchy

> M(9): :={p =), h?g; for some h; € R[X]}

> sos hierarchy (Lasserre, Parrilo)

fi=supaceR

st.f—ae M(g)t

SDP ©®

)

» SDP due to the Gram matrix method:

fsos <« 3G 0:f(x)=[x]"Glx]

» We have
> ft S ft+1 S fsos S f*

> f; converges to fgos @S t — oo

> Putinar: If M(g) is archimedean: f;s = f.



RAG and POP basics

Moment problem

fsos =supac R st.f—ae M(g)

» dual problem

fmom = inf L(f) s.t.L € R[x]",L > 0on M(g)

» This is an SDP (up to degree bounds), using moment matrices



RAG and POP basics

Moment problem

fsos =supac R st.f—ae M(g)

» dual problem

fmom = inf L(f) s.t.L € R[x]",L >0 on M(g)

» This is an SDP (up to degree bounds), using moment matrices
» If optimizing L in fyom has a then

f* > fsos > fmom = L(f) > f*
» Moment representation implies exactness of relaxation

Theorem (Curto, Fialkow)
If the moment matrix of L is flat, then L has a moment representation. J




NC-RAG and NC-POP

Free Polynomials
> Want to replace scalar variables by matrices/operators
> Free algebra R(X) with non-commuting variables X, ..., Xp

» Polynomial
f=> faw
w

> LetAc («Sd)ni f(A) =fily+ fX1A1 + fX2X1A2A1



NC-RAG and NC-POP

Free Polynomials
> Want to replace scalar variables by matrices/operators
» Free algebra R(X) with non-commuting variables Xi,..., X,

» Polynomial
f=> faw
w

> Let A€ (S9): F(A) = fily + fx, At + Fxx AoAr ...

> Add involution « on R(X)
> fixes R and {X,..., X,} pointwise
> X=X
» Consequence
F1(A) = {(A)TF(A) = 0



NC-RAG and NC-POP

Free Polynomial Optimization
> Let f € R(X)
» go=1,01,...,9r € R(X) defining a semi-algebraic set:

K={A[g(A) =0,...,g/(A) = 0}

» Want to minimize f over K

f,=supaecR stf—a>0onkK

What does f > 0 mean?




NC-RAG and NC-POP

Eigenvalue optimization
> Let f € R(X)

frc =infeig(f(A)) st.Ae K




NC-RAG and NC-POP

Eigenvalue optimization
> Let f € R(X)

fic=supacR st.f—a=0onkK

> sos relaxation
Mne(g) :=={p=2%; hi gjh; for some h; € R(X)}

fsos = supa€e R st f—ac Mnc(g)

> Fact: fsos < fre



NC-RAG and NC-POP

Eigenvalue optimization
> Let f e R(X)

fic=supacR st.f—a=0onkK

> sos relaxation
Mne(g) := {p = >_; h; gj h; for some h; € R(X)}

fsos = supa€e R st f—ac Mnc(g)

> Fact: fso5 < frc

» Observation: Gram matrix method still works
» Checking if f =", h7 h; is an SDP
> Checking if f = _; h* g; h; (with degree bounds) is an SDP



NC-RAG and NC-POP

Eigenvalue optimization
> Let f € R(X)

fic=supacR st.f—a=0onkK

> Mnc(9)t := {p = >_; h7g;h; for some h; € R(X)}
> sos hierarchy (Navascués, Pironio, Acin)

fr=supacR stf—aecMy(9):| spP©




NC-RAG and NC-POP

Eigenvalue optimization
> Let f e R(X)

fic=supacR st.f—a=0onkK

v

Mnc(9)t := {p = 3_; h; g; h; for some h; € R(X)}
sos hierarchy (Navascués, Pironio, Acin)

v

fr=supacR stf—aecMyx(9)| spp©

J

v

fy < friq < fsos < fne but inequalities might be strict
> f; converges to fsos as t — oo
Helton et al.: If M,,c(g) archimedean: fsos = fic

v



NC-RAG and NC-POP
NC Moment problem

from = inf L(f)  s.t.L € R(X)", L > 0 0n Mne(g)

» This is an SDP (up to degree bounds), using



NC-RAG and NC-POP
NC Moment problem

from = inf L(f)  s.t.L € R(X)", L > 0 0n Mne(g)

» This is an SDP (up to degree bounds), using

NC moment problem

For which linear form L : R(X) — R exists a (finite dimensional) Hilbert
space H, a unit vector ¢ € H and a *-representation = on B(H) such
that for all f € R(X):

L(f) = (x(F)$, )7

> Moment representation implies exactness of relaxation

Theorem (Klep et al.)

If the moment matrix of L is flat, then L has a moment representation.
In this case we can also extract a fin. dim. optimizer for f.




NC-RAG and NC-POP

Eigenvalue optimization: bonus
» Helton/McCullough: f = 0 < f sos



NC-RAG and NC-POP

Eigenvalue optimization: bonus
» Helton/McCullough: f = 0 < f sos

> proof idea: construct (GNS) a moment representation
> Assume f > 0 but not sos: separating linear form L
> induces a positive semidefinite bilinear form
> Hilbert space H as completion of R(X)/N with
N={geR(X)|L(g"g) =0}
» moment representation via X; : H — H,p — Xip
> L(p) = (p1,1)% = (p(A)1,1) for some representations A, of X;.

» Remark: positivity on matirices of a fixed size is sufficient



NC-RAG and NC-POP

Eigenvalue optimization: bonus
» Helton/McCullough: f = 0 < f sos

> proof idea: construct (GNS) a moment representation

» Assume f > 0 but not sos: separating linear form L

» induces a positive semidefinite bilinear form

> Hilbert space H as completion of R(X) /N with
N={geR(X)|L(g"g) =0}

> moment representationvia X; : H — H, p — Xip

> L(p) = (p1,1)3 = (p(A)1,1) for some representations A; of X;.

» Remark: positivity on matirices of a fixed size is sufficient

> |f K is NC-cube or NC-ball we need just one step in the hierarchy
» proof idea: Construct a flat moment matrix

> If K is NC-convex, positivity on matrices of a fixed size is sufficient



Application: Quantum Chemistry

Compute ground state energy of atoms
> Molecule of N electrons that can occupy M orbitals
» Each orbital associated with creation/anihilation operators a,T, a
» Pairwise interaction described by parameters hjj

; T ot
min <<p, h-k,a.a.aka,<p>
(aal) %,: e

st el =1
{al,a} = ala+aal =0
{aj,a} = {a;'[v a,T} =0

(> ala—N)p=0
i

" ‘/
©




Application: Systems Control

» Linear closed loop system with unknown feedback G

X
—O»iu system F j—»
feedback G

» Goal Find G which stabilizes the system

Math. System

X(t) = AX(t) + BU,
u(t)y=cxX(1)




Application: Systems Control

» Linear closed loop system with unknown feedback G

Xo u X

_,i system F j Math. System
feedback G x() = Ax{+ 50,

u(t)y=cxX(1)

» Goal Find G which stabilizes the system

Lyapunoviss
A system x(t) = Ax(t) is stable if there is a P = 0 with A/P + PA <0 J

» Lyapunov’s idea extends to our problem: Riccati equations



Application: Systems Control

» Linear closed loop system with unknown feedback G

X0 u X

_,ﬁ system F j Math. System
feedback G x() = Ax{+ 50,

u(t)y=cxX(1)

» Goal Find G which stabilizes the system

Lyapunoviss
A system x(t) = Ax(t) is stable if there is a P = 0 with A’/P + PA<0 J

» Lyapunov’s idea extends to our problem: Riccati equations

» Optimization problem is first a feasibility problem
» Can be refined by optimizing a specific singular value

» For a uniform strategy to get G we have to work free of
dimensions



Application: Quantum correlations

» Entanglement is one of the key features in Quantum Information
> Bell '64:

Quantum Q

Classical C

» How to distinguish C and Q?
» Bell-inequalities, e.g. EqoFo + EoF1 + E1Fo — E1F4



Basics of quantum theory

» A quantum system corresponds to a Hilbert space H
> lts states are unit vectors on H

> A state on a composite system is a unit vector ) on a tensor
Hilbert space, e.9. Ha® Hp

» 1 is entangled if it is not a product state

Ya@YPg With s € Ha, g € Hp

» A state ¢ € H can be measured
> outcomesac A
» POVM: a family {Ez}aca € B(H) with E; = 0and )", Ea =1
> probablity of getting outcome ais p(a) = ¢ T Exp.



Nonlocal bipartite correlations

> Question sets S, T, Answer sets A, B
» No (classical) communication

» Which correlations p(a, b | s, t) are possnble'? / @

Nonlocal game: winning predicate V: Ax Bx Sx T — {0,1}
» Winning probability (value of the game)

v

w = sup > oa(s,t) > V(ab;s t)p(a,bls,t)

seS;teT acA,beB
= sup Z fabstp(avb| S, t)

a,b,s,t




Correlations

Classical strategy C

Independent probability distributions {pZ}, and {pf’}b:
p(a7b | S,t) :pgpll‘)

shared randomness: allow convex combinations

a b
w = sup Z fabst Xs Vi
(XY) aps,t




Correlations

Classical strategy C
Independent probability distributions {pg}, and {p?}p:

p(a,b|st)=ps-pf

shared randomness: allow convex combinations

Quantum strategy Q.
POVMs {EZ}, and {FP}, on a joint Hilbert space, but [EZ, FP] = 0:

p(a.b|s,t)=yT(EZ- FP)y

w = sup Z fabst Xa Ytb
(X, Y) a,b,s,t




CHSH Game
» Questions S=T ={0,1}, Answers A=B={0,1}

> Alice & Bob win,ifa-+ b= st mod 2 63 .
s O

X



CHSH Game

» Questions S=T ={0,1}, Answers A=B={0,1}
> Alice & Bob win,ifa-+ b= st mod 2

@63 o
> we = 3
> wo, :4% + 505 ~ 0.854 Qz/\ i/@



CHSH Game

» Questions S=T ={0,1}, Answers A=B={0,1}
Alice & Bob win, if a+ b= st mod 2

@63 o
:Cgc_:; + 505 ~ 0.854 ® z/ \ I/@

lower bounds by brute force
upper bounds via SOS hierarchies of operator formulation:

v yYyy

2 measurements with 2 outcomes each: E2, E], F?, F{
Setting Es := EQ — E], F; :== F) — F}: CHSH inequality

vvyyVvYyy

forsH = EoFo + EoF1 + E1Fo — Eq Fy

» Optimizing foysy over variants of C, Q¢ give we, wo,



More correlations

Quantum strategy Q.
POVMs {E2}, and {F?}, on a joint Hilbert space, but [EZ, FF] = 0:

p(a,b| s t)=yT(EZ- FP)yp




More correlations

Quantum strategy Q.
POVMs {EZ}, and {FP},, on a joint Hilbert space, but [EZ, FP] = 0:

p(a.b|s,t)=yT(EZ- FP)y

Quantum strategy Q
POVMs {EZ}, and {Ftb}b on Hilbert spaces Ha, Hp, ¥ € Ha ® Hp:

p(a.b|s,t) =y (E2® FP)y




More correlations

Quantum strategy Q.
POVMs {EZ}, and {FP}, on a joint Hilbert space, but [EZ, FP] = 0:

p(a.b|s,t)=yT(EZ- FP)y

Quantum strategy Q
POVMs {EZ}, and {Ftb}b on Hilbert spaces Ha, Hp, ¥ € Ha ® Hp:

p(a.b|s,t) =y (E2® FP)y

> locality: (E2@1)(1® FP)= (1@ FP)(EZ® 1)
> If ¢ = ¢4 ® g then we have classical correlation

Fact

CCQCc(Q)CQ




Tsirelson’s problem

Tsirelson’s problem
Is Q@ = Q¢ oratleastcl(Q) = Qg7

Fact

CCQCcQ)C

> Bell: C # Q

» closure conjecture [Slofstra '16]: Q # cl(Q)
» weak Tsirelson [Slofstra '16]: Q # Q¢



Tsirelson’s problem

Tsirelson’s problem
Is Q@ = Q¢ oratleastcl(Q) = Qg7

Fact

CCQCclQ)C Q.

> Bell: C # Q
» closure conjecture [Slofstra '16]: Q # cl(Q)
» weak Tsirelson [Slofstra '16]: Q # Q¢

Theorem (Ji, Natarajan, Vidick, Wright, Yuen,20)
cl(Q) # Qe

» Ozawa: (strong) Tsirelson problem <= Connes conjecture



Connes embedding conjecture

Connes embedding conjecture

If wis a free ultrafilter on N and F is a I factor with separable
predual, then F can be embedded into the ultrapower R*.

> Fis ally factor if F is a subsalgebra of B(#) for an infinite
dimensional Hilbert space H and allows for a finite tracial state

> R is the hyperfinite 111 factor, i.e. it can be constructed as limit of
matrix algebras

» F embeds into R iff it allows matricial microstates, i.e. tracial
moments can be approximated by matricial tracial moments:
Let X = {A1,...,An} C Fsa be finite, then Yk € N, Ve > 0
3s€N,3By,...,B, € Ms(C) : |[7(A;, ... A,) = Tr(B, ... By)| < e



Connes embedding conjecture

Connes embedding conjecture

If wis a free ultrafilter on N and F is a I factor with separable
predual, then F can be embedded into the ultrapower R*.

» Fis ally factor if F is a subsalgebra of B(#) for an infinite
dimensional Hilbert space H and allows for a finite tracial state
> R is the hyperfinite 111 factor, i.e. it can be constructed as limit of
matrix algebras

» F embeds into R iff it allows matricial microstates, i.e. tracial
moments can be approximated by matricial tracial moments:
Let X = {A1,...,An} C Fsa be finite, then Yk € N, Ve > 0
3s€N,3By,...,B, € Ms(C) : |[7(A;, ... A,) = Tr(B, ... By)| < e

The conjecture is false )




Connes and NC RAG

> Let f € R(X)sym
> My = {320 (1 = XP)hi | b € R(X)} + [R(X), R(X)]
» K={A| A CN,N finite vN algebra : 1 — A2 = 0 for all i € [n]}.

Theorem (Klep, Schweighofer)
The following are equivalent

f trace-positive on K,

Ve >0:f+e e My.

Theorem (Klep, Schweighofer, (& B., Dykema))
Connes’ conjecture holds iff K can be replaced by

Kin == {A| Ai € Ms(R) forsome s e N: 1 — A2 = 0 forall i € [n]}.




Consequences

Operators on finite dimensional Hilbert spaces are not sufficient )

> Tsirelson: There is a quantum correlation of the form
p(a,b|s,t)=¢TE2® FPy which cannot be written as
p(a,b|s,t) = GZ® HP with commuting operators

» strong Tsirelson: There is a quantum correlation of the form
p(a,b|s,t)=¢TE2® FPy which is even not a limit of quantum
correlations in the commuting model

» Connes: There is a II; factor, where one cannot approximate its
tracial moments by tracial moments using matrices

» NC RAG: There is a polynomial which is trace-positive on the
matricial NC cube but not an element of the corresponding
quadratic module



Consequence for tracial optimization

Operators on finite dimensional Hilbert spaces are not sufficient )

> Let f € R(X)

fr =supac R st Tr(f—a)>0on K

» Choose K carefully:
should it contain only matrices or do we allow operators



Consequence for tracial optimization

Operators on finite dimensional Hilbert spaces are not sufficient )

> Let f € R(X)

fr =supac R st Tr(f—a)>0on K

» Choose K carefully:
should it contain only matrices or do we allow operators

> only matrices:
it might be that f5,s # fiy even when M, is archimedean

> also operators:
it might be that f; = f; but there is no flat moment matrix at all
(optimum attained only in infinite dimension)



Summary and Outlook

» Free polynomial optimization has a variety of applications:

> quantum chemistry

> systems control

» nonlocal games

> free LMIs: quantum channels

> Weyl algebras: Schrédinger operators



Summary and Outlook

» Free polynomial optimization has a variety of applications:
> quantum chemistry
> systems control
» nonlocal games
> free LMIs: quantum channels
> Weyl algebras: Schrédinger operators

» Problems/Needs
> restriction to specific dimensions
> elaborate theory of polynomial identites
> allow trace conditions in the semialgebraic set, e.g. Tr(D?) = 1
> find an optimality criterion without flat matrices



Summary and Outlook

» Free polynomial optimization has a variety of applications:
> quantum chemistry
> systems control
» nonlocal games
> free LMIs: quantum channels
> Weyl algebras: Schrédinger operators

» Problems/Needs
> restriction to specific dimensions
> elaborate theory of polynomial identites
> allow trace conditions in the semialgebraic set, e.g. Tr(D?) = 1
> find an optimality criterion without flat matrices

» Do research on trace-polynomials
Tr(X)X2 +2Tr(X?)X — X? +2

Thank you for your attention.



Gram matrix method

Example
f=X2y24y2x2 [X] = (X2, XY, YX, y?)T

X4 X3Y  X?YX X?Y?
[X]*[X] = YX®  YX2Y YXYX YXY?
XYX? XYXYy Xy2X Xy3

Y2X2 Y2XY Y3X Y4




Gram matrix method

Example
f=X2y24y2x2 [X] = (X2, XY, YX, y?)T

X4 X3Y  X?YX X?vy?
[X]*[X] = YX®  YX2Y YXYX YXY?
XYX? XYXYy Xy2X Xy3

Y2X2 Y2XY Y3X Y4




Gram matrix method

Example
f=X2Y24Y2X2
0 0O

y

0
G= 0
0

- O O
o O O
o O O

— fis not sos

[X] = (X2, XY, YX, Y2)T

X4
YXx:3
XYX?
Y2 X2

X3Y  X?YX X?vy?
YX2Y YXYX YXY?
XYXY XY2X XY3
Y2XY Y3X Y4

XT'[X] =




Gram matrix method

Example

f= X2Y2+Y2X2 [X] = (Xz,XY, YX, Y2)T
0001 X+ X3y  X2YX X2Y2

G-10000 XPixl— | X2 VXY YXYX yxy?
0000 XI'IXT= | xyx2e xvxy xvex xv?
1 000 Y2x2 y2xy y3x Y4

— fis not sos

g =2X*—X2YX-2X2Y2-XYX? 4 XY2X-2Y2X2+4Y*




Gram matrix method

Example

f— X2y24y2x2 [X] = (X2, XY, YX, Y3)T
0001 X4 X3y X2y?2

G-10000 XPixl— | X2 VXY YXyX yxy?
0000 XIIXT= | xyxe xvxy xvex xv?®
1000 Y2X2 y2Xy y3x @ v*

— fis not sos

g=2X*— —2X2Y2_XYX?4XY2X-2Y2X?+4Y*




Gram matrix method

Example
f— X2y24y2x2 [X] = (X2, XY, YX, Y3)T
8 8 8 é X+ X3y X2y?
G- XI[X] = YX3  YX2Y YXYX YXY2
0000 = | xyvx2 xvxy xvix xv2
1000 Y2X2 y2Xy y3x @ v*
— fis not sos
g=2X4— —OX2Y2_XYX24XY2X—2Y2X2 44 Y4
2 0 2 1 -1
0 0 0 O 0 0 1 0 -1 0
G=140 1 o |1 o (—1 0 0 2)50
20 0 4 0 2

— g is sos




Classical multivariate moment problem
> Let K C R" be closed.

Moment problem

Let L : R[x] — R be linear, L(1) = 1. Does there exist a probability
measure p with supp ¢ C K such that for all f € R[x]:

L) = [ f(@)an(ay?

Theorem (Riesz, Haviland)

Let K C R" be non-empty and closed, L € R[x]¥. There exists a
measure u supported on K such that

L(f) = /f(_a) du(a) for all f € R[x]

if and only if L(p) > 0 for all p € R[X] that are positive on K.




Hankel matrices

> Associate to L : R(X) — R the sesquilinear form

» The representing matrix for B is its Hankel matrix



Hankel matrices
> Associate to L : R(X) — R the sesquilinear form
» The representing matrix for B is its Hankel matrix
Definition
» The Hankel matrix M(L), indexed by u, v € (X), is given by
M(L)u’v = L(Ll)k V).

> The truncated Hankel matrix Mk(L) of degree k is the submatrix of M(L)
indexed by u, v € (X).

v




One Hankel matrix

Example

Consider R(X, Y) with basis (1, X, Y, X2, XY, YX,...)
[ L) LX) LY) LX3)  L(XY)
LX) L(X?) LXY) LX®  L(X?Y)
LY) L(YX) L(Y?) L(YX?®) L(YXY)
M(L) = | LOX®)  LX3)  LX®Y) LX) LXPY) .
L(YX) L(YX?) L(YXY) L(YX®) L(YX?Y) .
L(XY) L(XYX) L(XY2) L(XYX?) L(XYXY) ...




One Hankel matrix

Example
Consider R(X, Y) with basis (1, X, Y, X2, XY, YX,...)
[ L(1) LX) LY)  LX3®)  L(XY)
LX) L(X?) LXY) LX®  L(X?Y)
L(Y) L(YX) L(Y?) L(YX?®) L(YXY)
M(L) = | LO®)  LX3)  LX2Y) LX) LXPY)
L(YX) L(YX?) L(YXY) L(YX®) L(YX?Y)
L(XY) L(XYX) L(XY2) L(XYX?) L(XYXY) ...
L(1) LX) L(Y)
L(X3) L(XY)

Mi(L) = | L(X)
L(Y) L(YX) L(Y?)




